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In this study, estimates of inhomogeneous integral scales are derived from rapid
distortion theory (RDT) for the case of wall-bounded high-Reynolds-number
turbulence and from large-eddy simulation (LES) of a neutrally stratified atmospheric
boundary layer (ABL). As for any inhomogeneous flow, integral scales in different
directions are introduced. Downward integral scales are introduced since they differ
from the usual vertical integral scales because of the presence of the wall. The study
concentrates on the length scales based on the vertical velocity, which are the most
affected by blocking by the wall, which is assumed to be horizontal.

It is shown from RDT that the asymptotic behaviour of the integral length scales
for small heights depends crucially on the spectrum power law −2p. When 2p > 1
there is always one length scale which does not scale with the distance to the wall z.
Only the downward integral scale is proportional to z for any 2p. These results show
that the assumption, often made in studies of boundary layers, that all the lengths
are proportional to z, is not compatible with the assumption of a spectrum decaying
according to Kolmogorov’s law, but rather with a spectrum following a −1 power law.
It is an encouraging result since there is now widespread theoretical, experimental
and numerical evidence that such a −1 power-law subrange exists in the spectra of
high-Reynolds-number wall-bounded turbulence, for eddies larger than z. The RDT
results allow an interpretation of the vertical profiles of the integral length scales
computed from the LES outputs: above the third grid point, the vertical profiles of
the integral length scales have a linear shape, as expected for high-Reynolds-number
turbulence and 2p = 1. Very close to the surface, the upward integral length scales
decreases with z because of the fast decay of the spectrum (2p > 2) from the LES
subgrid model.

The longitudinal-to-transverse integral length scale ratio is computed using RDT
and LES. This ratio is interpreted as the aspect ratio of elongated near-wall large
eddies, which are ubiquitous features of LES of boundary layers in which shear plays
an important role in the dynamics. The LES shows that the longitudinal-to-transverse
integral length scale ratio is an increasing function of z, ranging between 1 and 3,
which is of the order of magnitude of the published theoretical value of 3.5. From
RDT, the evolution with z of the longitudinal-to-transverse integral length scale ratio
means either that the velocity shear β decreases with z and the spectral power law 2p

varies in a non-trivial manner, or if both the RDT and LES are valid that the scale
of the large eddies is proportional to βz with β varying from 1.3 to about 4.
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1. Introduction
Turbulence can be characterized by two types of length scale, following Hunt et al.

(1989), functional length scales and integral length scales. Functional length scales are
the ratios of two statistical quantities of the flow, where the ratio has the dimension
of a length. They are generally derived from one-point quantities (Andrén & Moeng
1993). Functional length scales are very often used in turbulence modelling because
they can be computed relatively easily, using only the values of one-point quantities.
The most relevant functional length scale at very high Reynolds number is the dissipa-
tion scale Lε = E3/2/ε, where E = (1/2)(u2

i )
1/2 is the total turbulent kinetic energy

(where u1, u2 are the turbulent horizontal velocity components and u3 the vertical
velocity) and ε = dE/dt the dissipation.

On the other hand, integral length scales are obtained from the shape of the
two-point correlation curve of a quantity in the flow or other non-local properties.
Theoretical studies usually rely on two-point quantities, which are easier to interpret
theoretically. Other length scales are used in turbulence studies: Kolmogorov’s length
ηK = (ν3/ε)1/4 (ν being the molecular viscosity), which is a functional length scale,
and Taylor’s microscale, which is actually an integral length for some authors
(e.g. Batchelor 1953, p. 47) and a functional length for others (Frisch 1995). Neither
Kolmogorov’s nor Taylor’s lengths are considered in the present paper, because they
tend to 0 as the Reynolds number increases. In atmospheric problems, they are several
orders of magnitude smaller than the lengths of interest, typically of order millimetres
compared to lengths of order metres to kilometres considered here.

In homogeneous turbulence, it can be shown that Lε and the integral scale LH are
proportional. Assume that turbulence follows a Kármán spectrum (Hunt & Graham
1978),

E(k) =

(
55

9
αK

)
ε2/3k4(

g2L
−2
0 + k2

)17/6
with αK ≈ 0.25, g2 = 0.558

where L0 is a length and k the wavenumber. A Kármán spectrum is in general a
good fit of atmospheric data at intermediate heights (Mann 1994). Then Lε and
LH can be computed as functions of L0 only, Lε ≈ 2.65L0 and LH ≈ 2.38L0. This
proportionality reflects one of the fundamental ideas of turbulence: the universality
of homogeneous turbulent flows means that only one length scale is sufficient to
characterize the flow. On the other hand, the problem is much more complicated in
inhomogeneous turbulence.

In this case, several inhomogeneous integral scales can be introduced, generalizing
the ideas of Hunt et al. (1989), Lee & Hunt (1989) and Jacquin et al. (1990):

L
(xk+)
ij =

∫ ∞

0

ui(x)uj (x + rek) dr

uiuj

, (i, j, k) ∈ {1, 2, 3}3 (1.1)

where xk are the geometrical coordinates (x3 or z being the vertical coordinate) (see
figure 1). These eighteen length scales take into account all directions of velocity and
separation. In strongly inhomogeneous turbulence, they may all be different. However,
in the case of the atmospheric boundary layer or of any turbulent flow bounded by
a flat surface, they do not take into account the presence of this flat surface. This
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Figure 1. Definition of the integral scales.
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Figure 2. Qualitative sketch of the difference between the downward and upward
integral scales.

suggests introducing the integral scales

L
(z−)
ij =

∫ z

0

ui(x)uj (x − re3) dr

uiuj

, (i, j ) ∈ {1, 2, 3}2. (1.2)

In the following, L
(z−)
ij is called the vertical downward integral scale, and L

(z+)
ij the

vertical upward integral scale. Taking points at different heights, (x, y, z) and (x, y, z′),
and writing r = z′ − z, results in

ui(x, y, z)uj (x, y, z + r) = ui(x, y, z′)uj (x, y, z′ − r).

Therefore, the integrand is similar in the definitions of L
(z+)
ij and L

(z−)
ij , but not the

limits of integrations, nor the location of the normalization variance, which is at the
lower limit of integration for L

(z+)
ij and at the upper limit of integration for L

(z−)
ij . A

sketch explaining the differences is given in figure 2. These length scales will prove to
be useful to characterize the anisotropy of turbulence.

Integral length scales are related to the spectra in the surface layer. For a moderate-
Reynolds-number turbulent boundary layer, it was shown by Hunt & Carruthers
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(1990) that the spectra display a k−2
1 subrange, which can be connected with the

appearance of elongated streaks (Lin, Adrian & Hanratty 1996). For a high-Reynolds-
number boundary layer, the situation is less clear. In the case of the atmospheric
surface layer, Drobinski et al. (2004) showed that the surface layer can be divided
into two sublayers: (i) the eddy surface layer (ESL) which is the lower sublayer
where blocking of impinging eddies is the dominating mechanism (Hunt & Carlotti
2001) and where a k−1

1 subrange is visible on the longitudinal and transverse velocity
fluctuation spectra only; (ii) the shear surface layer (SSL) which is an intermediate
sublayer, where shear affects the isotropy of turbulence (Kader & Yaglom 1989;
Yaglom 1991) and where a k−1

1 subrange is found in the spectra of the three velocity
fluctuation components. However, Morrison et al. (2002) show a very interesting
result from a pipe flow experiment apparently not displaying any k−1

1 range in the
spectrum. Unfortunately, a careful comparison of the experimental conditions that
do or do not give a k−1

1 range is still to be done.
The aim of the present study is to use a combination of two tools, inhomogeneous

rapid distortion theory (RDT) and high-resolution large-eddy simulations (LES)
to shed some light on integral scales in the neutral atmospheric boundary layer
(ABL). Neither of these two tools can perfectly represent the actual boundary layer,
because inhomogeneous RDT relies on several simplifications and assumptions and
LES relies on subgrid models. The point of view adopted for the inhomogeneous
RDT is to assume that the high-altitude spectrum has the shape of a general
spectrum with decay rate 2p � 1 to derive inhomogeneous integral length scales.
For the LES, a classical subgrid model is used, but at a much higher resolution than
usually in atmospheric studies, in order to minimize the influence of subgrid models.
Inhomogeneous RDT and LES are used together in order to try to overcome their
limitations.

The expressions for the inhomogeneous integral scales close to a wall are computed
in § 2 using RDT. The high-resolution LES is described in § 3, and the results put in
perspective and analysed in § 4. Section 5 looks at the results from the point of view
of elongated large eddies (‘streaks’) and § 6 concludes this study.

2. Derivation and resolution of the shear and blocking equations using rapid
distortion theory

2.1. Rapid distortion theory

In the context of the atmospheric boundary layer, RDT was introduced by Moffatt
(1967) to take into account the effect of shear. It has been used by Townsend (1976)
to compute theoretical estimates of Reynolds stresses. The possibility of taking into
account the blocking of turbulence by the ground (i.e. the remote reduction of the
vertical component of the velocity above the flat surface) was introduced by Hunt &
Graham (1978) in the context of shear-free turbulence, and generalized by Lee &
Hunt (1989) to consider the case of sheared and blocked turbulence. More recently, it
was shown by Carlotti & Hunt (2003) that the use of RDT over a solid boundary can
be understood as a mean of concisely describing the structure of turbulence, through
a ‘potential’ spectrum.

In the atmospheric boundary layer, the mean shear varies with height. Therefore
the RDT models, which all use a uniform value for the shear, could appear irrelevant
(figure 3). However, in order to keep analytical simplicity, shear-free and uniform-shear
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Figure 3. Simplified models for the atmospheric boundary layer; (a) non-uniform shear;
(b) uniform shear; (c) no shear.

models will be used here, following Lee & Hunt (1989). These models are justified
a posteriori by the agreement of their results with measurements, and, in the present
case, with LES.

The shear flow has the form (U0+Sz, 0, 0) where U0 is a constant and homogeneous
background flow and S is a constant shear. We will consider a flow in the inviscid
limit (see Hunt & Graham (1978) for a justification of taking the flow in the inviscid
limit – see also Magnaudet (2003), who proved that Hunt & Graham’s (1978) theory
is a leading-order approximation capable of describing short- and long-term evolution
of shear-free boundary layers in the limit of large Reynolds numbers, even though
viscosity is neglected.) The boundary condition imposed by the blocking is then
simply that the vertical component of the velocity field must be zero. The velocity
field is decomposed into two components: the shear field, and the fluctuating field.
More precisely, if we denote the velocity field as U , we can use the decomposition
U = (U0 + Sz)ex + u. Then u will be identical to the fluctuation field as long as only
linear processes are considered. In the same way, we note that U · ∇U = 0 because
the streamlines of the flow U = (U0 +Sz, 0, 0) are parallel. Furthermore, if we assume
S independent of z then ∇2U = 0. The Navier–Stokes equations in our case take the
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form

∂t u + (U + u) · ∇(U + u) = −∇p,

∇ · u = 0,

}
(2.1)

where p is the pressure divided by the reference density. In order to evaluate the
length scales introduced in the previous section, we use inhomogeneous RDT. RDT
consists of (i) choosing an initial condition that is relevant and statistically known
and (ii) linearizing the equations by neglecting the term u · ∇u. In the following, we
consider a flow over a rigid plane z = 0 in the physical space. At t < 0, the velocity
field (uH

1 , uH
2 , uH

3 ) is supposed to be homogeneous. At t = 0, the blocking boundary
condition and a shear flow are introduced.

The principle of the use of an unsteady theory, where the effective shear β = St

depends on time, in a statistically steady flow is, following Townsend (1976), based on
a local analysis of turbulence dynamics: quasi-isotropic turbulence is considered to
be (i) generated by the breakdown of previously distorted eddies, then (ii) transported
and distorted on a short enough time scale. (iii) Later nonlinear distortion and eddy
breakdown occurs. RDT is aimed at explaining what happens to the eddies during
(ii). In a steady state, all three stages are taking place simultaneously, but in many
cases (ii) is significant enough to make RDT meaningful. Interestingly, it appears that
the main effect of the nonlinearity is to impose a value on β . Maxey (1982) gives
an upper bound equal to 3.5 for this effective shear and a closure equation for its
computation. A further evaluation of order of magnitude confirms this experimental
finding: in an equilibrium log layer, S ≈ u�/(k0z), and t = te, the eddy turnover time,
where te = �e/ue ≈ (k0z)/u� ⇒ β = O(1) �e being the characteristic size of the eddies,
ue their characteristic fluctuation velocity, k0 the Kármán constant and u� the friction
velocity. This result is consistent with Maxey’s value.

Using inhomogeneous RDT (see Hunt & Graham (1978) for flows with no shear,
and Lee & Hunt (1989) and Mann (1994) for sheared turbulence), estimates of all
integral scales can be computed. In the present paper, we concentrate on the length
scales based on the vertical velocity u3 because this is the component mainly affected
by blocking. Starting from the Navier–Stokes equations (2.1), neglecting the nonlinear
term, taking the curl of the momentum equation and then the curl of the resulting
equation, using the incompressibility condition to simplify the expressions, one obtains
the equation for u3:

(∂t + Sz∂3) · (	u3) = 0, (2.2)

where 	= ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. This equation is parabolic and therefore
time appears explicitly in the solution. It is customary to use β = St and to write
m1 = k1, m2 = k2, m3 = k3 − βk1, k = (k2

1 +k2
2 +k2

3)
1/2, m =(m2

1+m2
2+m2

3)
1/2 and κ = (k2

1 +
k2

2)
1/2. With this notation, one can integrate (2.2) to give the two-dimensional Fourier

transform ũ3(k1, k2, z, t) of the vertical velocity field:

ũ3(k1, k2, z, t) =
1

2π

∫
k2

m2
ûH

3 (k1, k2, k3)(e
−im3z − e−κz) dk3. (2.3)

In the above equation, the first term in the parentheses on the right-hand side accounts
for the shear effect, while the second one accounts for blocking (Mann 1994).

2.2. Calculation of the integral scales

Using the results of the above subsection, the general expressions for the integral
scales according to RDT are now derived, starting with L

(y)
33 , which is the simpler. As
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seen in § 1,

L
(y)
33 =

∫ ∞

0

u3(x)u3(x + re2) dr

u2
3

.

Using some algebra, (2.3) leads to the following expression for the denominator of
the definition of L

(y)
33 :

u2
3 =

1

(2π)2

∫∫∫
Ψ33(k1, k2, k3)|e−im3z − e−κz|2 dk1 dk2 dk3 (2.4)

where

Ψ (k1, k2, k3) =

[
k2

1 + k2
2 + k2

3

k2
1 + k2

2 + (k3 − βk1)2

]2

ΦH
33(k1, k2, k3), (2.5)

and ΦH
ij is the correlation spectrum of initial homogeneous turbulence (e.g. Batchelor

1953).
For the numerator, we have to take the integral for r from 0 to ∞. The integral has

the form
∫ ∞

0
dr ×

∫ ∞
−∞ f (k2)e

ik2r dk2. But∫ A

0

dr ×
∫ ∞

−∞
f (k2)e

ik2r dk2 = 2

∫ ∞

0

f (k2)
sin k2A

k2

dk2

because f is even. Using lemma 1 in Appendix A to take the limit A → ∞ leads to∫ ∞

0

u3(x, y, z)u3(x, y + r, z) dr

=
1

(2π)2
π

2

∫ ∫
Ψ H

33 (m1, 0, m3 + βm1)|e−im3z − e−|m1|z|2 dm1 dm3. (2.6)

The complete expression for L
(y)
33 is given by the ratio of (2.4) and (2.6), which will be

given for small z in § 2.3.
The calculation of L

(x)
33 is similar to that for L

(y)
33 , and we get∫ ∞

0

u3(x, y, z)u3(x + r, y, z) dr =
1

(2π)2
π

2

∫∫
ΦH

33(0, k2, k3)
∣∣e−ik3z − e−|k2|z∣∣2 dk2 dk3.

(2.7)
Note that this expression is independent of the total shear β .

Similarly, one finds∫ ∞

0

u3(x, y, z)u3(x, y, z + r) dr =

∫ ∞

0

dr

∫∫∫
k4

m4
ΦH

33 ×
(
e−i(k3−βk1)z − e−κz

)
×
(
ei(k3−βk1)(z+r) − e−κ(z+r)

)
dk1 dk2 dk3.

But now we cannot simply apply Lemma 1: we have to split the integral into parts
for which we will be able to take the limit for A → ∞ thanks to Lebesgue’s lemma
(lemma 2 in Appendix A), lemma 1 and the fact that

∫ ∞
0

e−κr dr converges. After a
few manipulations one obtains∫ ∞

0

u3(x, y, z)u3(x, y, z + r) dr =
1

(2π)2
π

2

∫ ∫
Ψ (m1, m2, 0)(1 − e−κz) dm1 dm2

+

∫∫∫
Ψ (m1, m2, m3)

[
sin m3z

m3

− (cos m3z − e−κz)
e−κz

κ

]
dm1 dm2 dm3. (2.8)
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Present notation m z q n |m|αΨ (m) K
Theorem notation x l j n f (x) K

Table 1. Notation correspondence for applying Theorems 1 and 2.

The calculation of L
(z−)
33 is similar, except for the finite limit of integration, which

makes
∫ z

0
eκr dr converge:∫ z

0

u3(x, y, z)u3(x, y, z − r) dr =

∫ ∫ ∫
k4

m4
ΦH

33 (e−im3z − e−κz)

×
[

i

m3

(1 − eim3z) − 1

κ
(1 − e−κz)

]
dk1 dk2 dk3 (2.9)

2.3. Length scales for small z and a general spectrum

Although the theory presented above is valid for any initial turbulent velocity field
which extends in the whole space, we consider here an isotropic initial field for the
sake of simplicity. Assume that the energy spectrum of this initial velocity field is
E(k), with integral scale LH , and applies for z 	 LH . In this section non-dimensional
variables are used, writing z for z/LH and k for LH k. It is known that for isotropic
turbulence (e.g. Batchelor 1953),

Φij (k) =
E(|k|)
4π|k|4 (|k|2δij − kikj ).

Therefore, from (2.5),

Ψ (k) =
k2

1 + k2
2

4π
(
m2

1 + m2
2 + m2

3

)2
E(k).

The ‘potential’ (Carlotti & Hunt 2003) energy spectrum is taken as a generalized
Kármán spectrum of exponent 2p,

E(k) =
Ck4

(1 + k2)p+2
,

with 2p = q + α, k integer and 0 < α < 1 (C is a constant independent of k).

2.3.1. Expansion of u2
3

The following notation is used:

u2
3 =

1

(2π)2
J (z). (2.10)

Writing K(m) = |e−im3 − exp(−
√

m2
1 + m2

2)|2 and using the above notation and (2.4),
we have J (z) =

∫∫∫
Ψ (m)K(zm) dm. Applying Theorem 1 (see Appendix B) in the

case α 
= 0 or Theorem 2 (see Appendix B) when α = 0, we write n = m/|m| and the
notation correspondence is given in table 1.
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Using the following asymptotic behaviours:

|m|αΨ (m) =
C

4π

n2
1 + n2

2[
n2

1 + n2
2 + (n3 + βn1)2

]q/2+α/2︸ ︷︷ ︸
=fq+2(n)

1

|m|q+2
+ O

(
1

|m|q+3

)
, (2.11)

K(m) = 1︸︷︷︸
=K2(n)

×|m|2 + O(|m|3),

one finds

J (z) = azq−1+α + bz2 + O(zq+α, z3)

where

a = fp

∫ ∞

0

[∫∫
K(rn)fq+2(n) dn

]/
rq+αdr,

b = fp

∫ ∞

0

[∫∫
Ψ (rn)K2(n) dn

]
r4−αdr,

where fp
∫

means that the integral should be understood in Hadamard’s finite part
sense (Carlotti 2001). Note that when α = 0, Theorem 2 provides us with a logarithmic
correction, but this term happens to vanish. Using some algebra:

a =
C

4π
fp

∫ ∞

0

[ ∫ 2π

0

∫ π

0

∣∣e−ir cos θ − e−r | sin θ |
∣∣2 sin2 θ

[sin2 θ + (cos θ + β sin θ cos φ)2]p
sin θ dθ dφ

]
dr

r2p
,

b =
C

4π
fp

∫ ∞

0

[∫ 2π

0

∫ π

0

sin2 θ[sin2 θ + (cos θ + β sin θ cos φ)2]2

[1 + r2 sin2 θ + r2(cos θ + β sin θ cos φ)2]p+2
r2 sin θ dθ dφ

]
dr

rα−4
.


(2.12)

The only term in the Ψ expansion for which we have experimental or theoretical
results is the first one. There is no reason to trust an expansion to a higher order.
Therefore, depending on the value of 2p:

1 < 2p < 3 : J (z) ∼ az2p−1,

3 < 2p < 4 : J (z) ∼ bz2.

}
(2.13)

2.3.2. Expansion of L
(x)
33

The same analysis as in § 2.3.1 is done here, with

I x = (2π)2
∫ ∞

0

u3(x, y, z)u3(x + r, y, z) dr.

From (2.7), we get I x = π/2
∫ ∫

Ψ (0, m2, m3)K(0, zm2, zm3) dm2 dm3. Therefore

I x(z) = π/2[axzq+α + bxz2 + O(zq+1+α, z3)]

with

ax = fp

∫ ∞

0

[∫
K(rnx)fq+2(nx) dnx

]/
rq+α+1 dr,

bx = fp

∫ ∞

0

[∫
Ψ (rnx)K2(nx) dnx

]
r3−α dr,
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where nx = (0, n2, n3) represents the unity vector on the circle. Using some algebra:

ax =
C

4π
fp

∫ ∞

0

[∫ 2π

0

∣∣e−ir cos θ − e−r | sin θ |∣∣2 sin2 θ dθ

]
dr

r2p+1
,

bx =
C

4π
fp

∫ ∞

0

[∫ 2π

0

sin2 θ

(1 + r2)p+2
r2dθ

]
dr

rα−3
.

 (2.14)

For the same reason as for J (z), the asymptotic expansion has to be truncated to
a realistic order, giving

1 < 2p < 2 : I x(z) ∼ π

2
axz2p,

2 < 2p < 4 : I x(z) ∼ π

2
bxz2.

 (2.15)

Equations (2.13) and (2.15) lead to

1 < 2p < 2 : L
(x)
33 ∼ π

2

ax

a
z,

2 < 2p < 3 : L
(x)
33 ∼ π

2

bx

a
z3−2p,

3 < 2p < 4 : L
(x)
33 ∼ π

2

bx

b
.


(2.16)

2.3.3. Expansion of L
(y)
33

The same analysis as in § 2.3.1 is done again, with

I y = (2π)2
∫ ∞

0

u3(x, y, z)u3(x, y + r, z) dr.

From (2.6), we get I y = π/2
∫ ∫

Ψ (m1, 0, m3)K(zm1, 0, zm3) dm1 dm3. Therefore

I y(z) = π/2[ayzq+α + byz2 + O(zq+1+α, z3)]

with

ay = fp

∫ ∞

0

[∫
K(rny)fq+2(ny) dny

]/
rq+α+1 dr,

by = fp

∫ ∞

0

[∫
Ψ (rny)K2(ny) dny

]
r3−α dr,

where ny = (n1, 0, n3). Using some algebra:

ay =
C

4π
fp

∫ ∞

0

[∫ 2π

0

∣∣e−ir cos θ − e−r | sin θ |
∣∣2 sin2 θ

[sin2 θ + (cos θ + β sin θ)2]p
dθ

]
dr

r2p+1
,

by =
C

4π
fp

∫ ∞

0

[∫ 2π

0

sin2 θ[sin2 θ + (cos θ + β sin θ)2]2

[1 + r2 sin2 θ + r2 (cos θ + β sin θ)2]p+2
r2 dθ

]
dr

rα−3
.

 (2.17)

The truncation to the realistic order leads to

1 < 2p < 2 : I y(z) ∼ π

2
ayz2p,

2 < 2p < 4 : I y(z) ∼ π

2
byz2.

 (2.18)
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Equations (2.13) and (2.18) lead to

1 < 2p < 2 : L
(y)
33 ∼ π

2

ay

a
z,

2 < 2p < 3 : L
(y)
33 ∼ π

2

by

a
z3−2p,

3 < 2p < 4 : L
(y)
33 ∼ π

2

by

b
.


(2.19)

2.3.4. Expansion of L
(z+)
33

Once more, the same analysis is done, with

I z+ = (2π)2
∫ ∞

0

u3(x, y, z)u3(x, y, z + r) dr.

From (2.8), we get

I z+ =π/2

∫ ∫
Ψ (m1, m2, 0)(1 − e−κz) dm1 dm2

+

∫∫∫
Ψ (m1, m2, m3)

κ

[
κ sin m3z

m3

− (cos m3z−e−κz) e−κz

]
dm1 dm2 dm3(= I z1++I z2+).

The following asymptotic expansions are needed:

1 − e−κ = κ − (1/2)κ2 + (1/6)κ3 + O(κ4),

κ sin m3

m3

− (cos m3 − e−κ ) e−κ =

(
3

2

κ2

|m|2 +
1

2

m2
3

|m|2

)
|m|2 + O(|m|3).

This leads to

I z1+(z) =
π

2

[
az+

1 zq+α + bz+
1 z + O(zq+1+α, z2)

]
,

I z2+(z) = az+
2 zq+α + bz+

2 z2 + O(zq+1+α, z2).

Truncating to realistic order, we have for 1 < 2p < 4:

I z+(z) ∼ π

2
bz+

1 . (2.20)

Denoting bz+ = bz+
1 , (2.13) and (2.20) lead to

1 < 2p < 3 : L
(z+)
33 ∼ π

2

bz+

a
z2−2p,

3 < 2p < 4 : L
(z+)
33 ∼ π

2

bz+

b
z−1,

 (2.21)

with

bz+ = fp

∫ ∞

0

[∫
Ψ (rnz)K1(nz) dnz

]
r2−α dr

where nz = (n1, n2, 0), K(nz) = 1 − exp(−
√

n2
1 + n2

2) and therefore K1(nz) = 1 from
the asymptotic expansions derived above. Using some algebra,

bz+ =
C

4π
fp

∫ ∞

0

[∫ 2π

0

r2
(
1 + β2 cos2 θ

)(
1 + r2 + r2β2 cos2 θ

)p+2
dθ

]
dr

rα−2
. (2.22)
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2.3.5. Expansion of L
(z−)
33

Now I z− =(2π)2
∫ z

0
u3(x, y, z − r)u3(x, y, z) dr is considered. From (2.9), we can

write I z− =
∫∫∫

|m|−1Ψ (k1, k2, k3)K(zk) dk1 dk2 dk3 with the following correspondence
relationships:

|m|α−1Ψ (m) ↔ f (x),

(e−im3 − e−κ )

[
im

m3

(1 − eim3 ) − m

κ
(1 − e−κ )

]
↔ K(m),

so from (2.12), fq+2(n) becomes fq+3(n) and using some algebra, one can show that

K(m) = 1/2︸︷︷︸
=K2(n)

×|m|2 + O(|m|3). (2.23)

Therefore

I z− = az−z2p + bz−z2 + cz−z3 + O(z2p+1, z4).

The evaluation of bz− shows that it is zero, and therefore, truncated to the realistic
order,

1 < 2p < 3 : I z− ∼ az−z2p,

3 < 2p < 4 : I z− ∼ cz−z3,

}
(2.24)

with

az− = fp

∫ ∞

0

[∫
K(rn)fq+3(n) dn

]/
rq+α+1 dr,

cz− = fp

∫ ∞

0

[∫
Ψ (rn)K2(n) dn

]
r4−α dr,

which leads to

az− =
C

4π
fp

∫ ∞

0

∫ 2π

0

∫ π

0

(
e−ir cos θ − e−r | sin θ |)[ i(1−e−ir cos θ )

cos θ
− 1−e−r | sin θ |

| sin θ |

]
sin2 θ

[sin2 θ + (cos θ + β sin θ cosφ)2]p
sin θ dθ dφ

 dr

r2p
,

cz− =
C

4π
fp

∫ ∞

0

[∫ 2π

0

∫ π

0

1

2

sin2 θ[sin2 θ + (cos θ + β sin θ cos φ)2]2

[1 + r2 sin2 θ + r2 (cos θ + β sin θ cosφ)2]p+2
r sin θ dθ dφ

]
dr

rα−4
,


(2.25)

Using, (2.13) and (2.24), we have

1 < 2p < 3 : L
(z−)
33 ∼ π

2

az−

a
z,

3 < 2p < 4 : L
(z−)
33 ∼ π

2

cz−

b
z.

 (2.26)

3. High-resolution LES of the neutral atmospheric boundary layer
3.1. The LES model

The large-eddy simulations presented in this paper were made using Méso-NH,
an LES and meso-scale code developed by CNRM (Météo France and CNRS)
and Laboratoire d’Aérologie (CNRS) (Lafore et al. 1998). In this paper, it is used
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exclusively in its LES mode. Méso-NH is designed to be a general purpose atmospheric
code, and can therefore deal with stable and unstable conditions, and accommodate
moisture and vapour content computations. All these modules are switched off in the
present simulations, and therefore, in the following only the equations simplified for
the neutral case are presented.

The principle of any large-eddy simulation is to compute a spatially filtered version
of the actual velocity field. Here, we denote by a tilde the filtering operation. Starting
with the Navier–Stokes equations, assuming that the filtering operation commutes
with differentiation, which is true as a first approximation, the equation for the filtered
velocity field is obtained:

∂t ũi + ∂j ũi ũj = −∂ip̃ − ∂jΓ (ui, uj ) + ν	ũi + 2(Ω × ũ)i ,
∂i ũi = 0,

}
(3.1)

where ν is the kinematic viscosity and Γ (f, g) = f̃g − f̃ g̃. In all the atmospheric
calculations, the viscous term ν	ũi is very small compared with the subgrid stresses
∂jΓ (ui, uj ) and is therefore neglected. The term 2Ω × ũ represents the forcing of the
flow by Coriolis forces. The equations (3.1) do not constitute a closed system, since
the subgrid stresses depend on the unfiltered velocity field. Some extra modelling is
required in order to close these equations. In Méso-NH this is done using the subgrid
kinetic energy (Cuxart, Bougeault & Redelsperger 2000):

e = 1
2
(Γ (u1, u1) + Γ (u2, u2) + Γ (u3, u3)) (3.2)

as a prognostic variable, i.e. by writing an empirical evolution equation for e and an
equation relating e and Γ (ui, uj ):

∂te = −∂k(ũke) − Γ (ui, uk)∂kũi − ∂j (C2mL
√

e∂je) − ε, (3.3a)

ε = Cε

e3/2

L
, (3.3b)

Γ (ui, uj ) =
2

3
δij e − 4

15

L

Cm

√
e
(
∂j ũi + ∂iũj − 2

3
δij ∂kũk

)
. (3.3c)

In the above set of equations, Cm, C2m and Cε are non-dimensional constants and L

is a length scale. Consideration of the free-stream turbulence properties (in particular
the assumption that turbulence has a Kolmogorov k−5/3 power spectrum) suggests
using Cm = 4, C2m = 0.2, Cε = 0.7 and L = (	x	y	z)1/3 where 	x, 	y, and 	z are
the mesh sizes (Schmidt & Schumann 1989).

The set of equations (3.1) and (3.3) is closed provided boundary conditions are
given. In the present simulations, the flow domain is assumed to be periodic in the
horizontal directions, so that the lateral boundary conditions are set by periodicity.
At the top a rigid lid is placed, i.e.

ũ3 = 0,

Γ (ui, uj ) = 0.

}
(3.4)

Therefore e = 0 at the top of the flow domain. The horizontal velocities at the top of
the domain are given by the geostrophic forcing.

The boundary condition at the ground is calculated using the assumption that the
velocity field of the large eddies ũi below the first grid point behaves like the mean
flow of a boundary layer, i.e. that an instantaneous log-law is valid close to the wall
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Figure 4. Snapshot of the turbulent longitudinal (or streamwise) velocity close to the ground
(z � 10 m), normalized by the friction velocity u∗. The snapshot shows evidence of elongated
streaks of 300m average spacing. The shorter arrow indicates the surface wind vector (�5m s−1)
and the longer arrow the upper-level wind vector (�10m s−1) (which is nearly geostrophic).

(Schmidt & Schumann 1989):

Γ (u1, u3) = − ũ1

ũ
u2

∗, (3.5a)

Γ (u2, u3) = − ũ2

ũ
u2

∗, (3.5b)

u∗ = k0ũ/ ln
x3

z0

, (3.5c)

where ũ =
√

ũ1
2
+ ũ2

2
is the filtered streamwise velocity and u∗(x1, x2, t) is to be

determined. In the present simulation, the roughness length z0 is imposed and u∗ is
computed by applying (3.5c) in the first cell close to the ground, i.e. at the height
	z/2. The subgrid kinetic energy e in that cell is calculated using (3.3a), where the
term Γ (ui, uk)∂kũi is interpolated from its value at x3 = 	z+	z/2. The mean velocity
is computed from (3.1) and (3.5). This boundary condition is a crucial feature of the
model, because it is impossible to resolve the viscous sublayer, which is only a few
millimetres thick.

3.2. Streamwise large eddies, spectra and integral length scales

A neutrally stratified, mid-latitude, barotropic and dry ABL was simulated on a
domain 3 km long, 1 km wide and 750 m high (figure 4). The computational grid is
cubic to avoid any influence of anisotropy of the grid, with a 6.25 m mesh (Carlotti
2002). The simulation domain is assumed to be placed at 45◦ North, and for the
forcing we assume a large-scale pressure gradient that would balance a geostrophic
wind of U1 = 10 m s−1 above the boundary layer. The friction velocity found in the
LES is u� = 0.4 m s−1.

The fine-scale structures found near the ground are shown in figure 4. These
organized large eddies in the form of near-surface streaks are ubiquitous features of
LES of the ABL in which shear plays an important role in the dynamics (Deardorff
1972; Moeng & Sullivan 1994; Lin et al. 1996; Drobinski & Foster 2003). Streaks
reside within the high-shear surface region (i.e. the surface layer and the lower ABL).
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Figure 5. Longitudinal (or streamwise) (a), transverse (b) and vertical (c) velocity fluctuation
spectra computed from the LES velocity field. The solid, dashed and dotted lines correspond
to the first staggered grid level (i.e. 3.125m for E11 and E22 and 6.25m for E33) and to
approximately 22 and 560m, respectively. The two segments show the −5/3 and −1 slopes
(the value of the slope is indicated).

As shown in figure 4, they are best visualized in cross-sections parallel to the surface
that show organized regions of alternating high- and low-speed fluid for any one of
the three velocity components. In figure 4, the streak spacing is about 300 m and
they have a 100 m vertical extent. Streaks form, evolve and decay over relatively
short lifetimes of several tens of minutes after which they rapidly regenerate (Foster
1997; Drobinski & Foster 2003; Drobinski et al. 2004). Near-surface streaks have
been found experimentally in a near-neutral atmospheric surface layer (Weckwerth,
Grund & Mayor 1997; Drobinski et al. 2004).

Longitudinal spectra at several heights are shown in figure 5. They show a clear
trend towards a k−1

1 slope at intermediate wavenumbers when the height decreases, in
accordance with atmospheric experimental evidence (Drobinski et al. 2004). Indeed,
figure 5 shows evidence of the two sublayers of the surface layer: very close to
the ground, a k−1

1 subrange is visible on the longitudinal and transverse velocity
fluctuation spectra only (eddy surface layer); at 22 m, a k−1

1 subrange is found in the
spectra of the three velocity fluctuation components and at 560 m, the turbulence
displays isotropic characteristics. More precisely, the LES gives access to the depths
of the eddy and shear surface layers which are about 20 and 270 m, respectively.
Because of the limited resolution of the LES, because of the subgrid model, effect of
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Figure 6. Integral scales Lx
33 (a), L

y
33 (b), Lz+

33 (c) and Lz−
33 (d) computed from the LES

velocity field (solid line). The dashed, dotted and dash-dotted curves correspond to different
approximations of the integral length scales in the region below or above the third grid point,
as indicated.

which is felt at wavenumbers smaller than the cut-off wavenumber, and because of
numerical diffusion, spectra are significantly damped for large wavenumbers. Close
to the ground, the Kolmogorov range does not exist, and the k−1

1 subrange is itself
damped, since the filtering length (6.25 m) is of the same order as the height and the
large-scale limit of the Kolmogorov range should be also of the same order (Kaimal
et al. 1972; Hunt & Carlotti 2001; Högström, Hunt & Smedman 2002; Drobinski
et al. 2004).

Figure 6 displays the vertical profiles of the integral length scales L
xi±
33 computed

from the simulated velocity field using (1.1) and (1.2). Above the third grid point,
the vertical profiles of L

xi±
33 have a linear or quasi-linear shape, whereas close to the

ground, the vertical profiles of Lz+
33 , in particular, decrease as z−0.6 with z.

4. Behaviour of the integral scales
4.1. Not all length scales are proportional to z

Defining γi by the following equations:

L
(x)
33 ∝ zγ1, L

(y)
33 ∝ zγ2, L

(z+)
33 ∝ zγ3, L

(z−)
33 ∝ zγ4,
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1 < 2p < 2: slow roll-off 2 < 2p < 3 3 < 2p < 4: fast roll-off
(typical of high-Reynolds- (typical of low-Reynolds-

number turbulence) → number turbulence or turbulence
calculated with subgrid models)

γ1 = 1 0 < γ1 = 3 − 2p < 1 γ1 = 0
γ2 = 1 0 < γ2 = 3 − 2p < 1 γ2 = 0

0 < γ3 = 2 − 2p < 1 −1 < γ3 = 2 − 2p < 0 γ3 = −1
γ4 = 1 γ4 = 1 γ4 = 1

Table 2. Asymptotic behaviour of integral scales, from (2.16), (2.19), (2.21) and (2.26).

L
(x)
33 L

(y)
33 L

(z+)
33 L

(z−)
33

1 < 2p < 2
π

2

ax

a
z

π

2

ay

a
z

π

2

bz+

a
z2−2pL

2p−1
H

az−

a
z

2 < 2p < 3
π

2

bx

a
z3−2pL

2p−2
H

π

2

by

a
z3−2pL

2p−2
H

π

2

bz+

a
z2−2pL

2p−1
H

az−

a
z

3 < 2p < 4
π

2

bx

b
LH

π

2

by

b
LH

π

2

bz+

b
z−1L2

H

bz−
3

b
z

Table 3. Dimensional expressions for L
(x)
33 , L

(y)
33 , L

(z+)
33 and L

(z−)
33 .

and using (2.16), (2.19), (2.21) and (2.26), the results can be summarized in table 2.
Note that they are valid in the general shear plus blocking case (the values of the
constant being determined by the shear from (2.12), (2.14), (2.17), (2.22) and (2.25)).

Table 2 shows that if all the eddy scales are proportional to z, then 2p → 1. As a
corollary, if the spectral exponent 2p 
= 1, the eddy length scales are not proportional
to z and therefore are inconsistent with a naive dimensional analysis formulation of
the equilibrium log-layer theory. This shows that scaling assumptions are not unique
and that they are closely related to the form of spectra. Indeed, the reason why the
simple dimensional argument (according to which the distance to the boundary is
the only autonomous length scale) does not apply is that, because of the top-down
characteristic of the the surface layer, a second length scale appears in our problem,
namely the integral scale of turbulence far away from the boundary LH . Hence
dimensional analysis gives

L = LHφ(z/LH )

where L is one of the integral lengths. From this dimensional analysis, it is not possible
to determine the function φ. The above RDT calculation offers a way of calculating
φ. Because in the above calculation all the length were determined with respect to
LH , the dimensional version of (2.16), (2.19), (2.21) and (2.26) is given in table 3.

Table 2 allows the vertical profiles of the length scales obtained from the LES
velocity field to be interpreted, as shown in figure 6. One can see very clearly that
γ4 = 1 with a very good agreement. For z � 20 m, the results of table 2 for L

(x)
33 ,

L
(y)
33 and L

(z−)
33 are reproduced well with γ1 = γ2 = γ4 = 1. For L

(z+)
33 , two approximate

curves are plotted corresponding to γ4 = 0.4 (i.e. 2p = 1.6 ≈ 5/3) (dashed line) and
γ4 = 1 (i.e. 2p = 1) (dash-dotted line). The linear fit 0.55z + 30 corresponds to a
spectral subrange with a −1 power law when the constant 30 is smaller than the
0.55z term. This implies the existence of the spectral subrange with a −1 power law
for z large enough. This is in good agreement with the LES spectra (see figure 5)
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2p = 5/3 2p = 1.5 2p = 1.3 2p = 1.1 2p = 1.01

β = 0 k0 = 0.47 k0 = 0.42 k0 = 0.33 k0 = 0.22 k0 = 0.20
β = 2 k0 = 0.45 k0 = 0.40 k0 = 0.31 k0 = 0.21 k0 = 0.19
β = 4 k0 = 0.45 k0 = 0.39 k0 = 0.31 k0 = 0.21 k0 = 0.19
β → ∞ k0 → 0.45 k0 → 0.39 k0 → 0.31 k0 → 0.21 k0 → 0.19

Table 4. Values of k0 computed numerically for various values of 2p.

and the experimental results obtained by Drobinski et al. (2004) in the shear surface
layer. However, for z � 20 m, L

(z+)
33 increases with decreasing z. Assuming a spectrum

decay 2p = 2.6, this corresponds very well with the values predicted by RDT. This
corresponds to the fast decay of the spectrum due to subgrid model (figure 5).

4.2. Consequence for the mixing length

The basic argument of classical boundary layer theory is that, from dimensional
analysis (see Prandtl 1952), the mixing length, which is the length scale related to
Reynolds stress, should be proportional to the distance to the wall, �m = k0z, where
k0 is the Kármán constant. Using his conical eddy hypothesis, Townsend (1976),
assuming as a starting point that the mixing length �m is proportional to z, was able
to derive the value of Kármán constant k0 ≈ 0.32, the a value which depends on the
actual shape of the eddies. Malkus (1956), using arguments of stability theory was
able to find k0 ≈ 0.33.

The physical interpretation of the mixing length as the vertical length on which, on
average, the velocity fields are de-correlated makes it clear that it should be very close
to the smaller vertical integral scales of the flow, as Prandtl (1952) noticed. Therefore,
one must have

�m ∼ L
(z−)
33 . (4.1)

From table 3, L
(z−)
33 = (az−/a)z. Thus, our analysis shows that

�m ∼ k0z,

where k0 depends a priori on β and is given by k0 = az−/a, az− and a being given
by (2.25). From this theory, k0 can be computed numerically for several values of the
spectrum decay rate, between 2p = 5/3 and 2p = 1 (table 4).

Note that k0 depends only very weakly on β . This indicates that RDT is performing
well in the present case, even though it assumes a constant shear whereas in a
logarithmic layer the shear is not constant. The computed values for 2p = 5/3 show
a good agreement with the experimental value of 0.4. In the ESL, one should expect
a value of k0 between the two extremes, i.e. 0.5 and 0.2, as the form of the spectrum
displays both a −1 and −5/3 spectral range.

5. Elongated large eddies
Near-surface elongated large eddies (figure 4) are generated near the ground and

carry most of the turbulent fluxes of momentum (and buoyancy in the ABL) (e.g.
Mahrt & Gibson 1992; Högström & Bergström 1996; Lin et al. 1996) and are of
crucial importance for energy balance issues and for LES that have to represent at
least the strongest of these structures.

In order to study these large eddies, one can use the ratios L
(x)
ij /L

(y)
kl with i, j , k,

and l suitably chosen. Elongated large eddies from pure shear RDT were shown
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in Hunt & Carruthers (1990) by visualization of the distorted u1 and u2 fields. It was
decided in the present work to focus on the the effect of blocking on the vertical
velocity, comparing the pure shear and the shear plus blocking cases. For this purpose,
the ratio L

(x)
33 /L

(y)
33 is a good indicator of the effect of turbulence distortion in the

presence of shear or/and a wall. The influence of the non-dimensional shear β and
the spectrum decay rate 2p will also be investigated.

5.1. Shear with blocking (near-wall turbulence)

From table 3, the ratio L
(x)
33 /L

(y)
33 for 1 < 2p < 2 is given by

L
(x)
33

L
(y)
33

=
ax

ay
. (5.1)

From (2.14), ax is independent of β:

ax = 4C/4π

∫ π/2

0

F (2p + 1, θ) sin2 θ dθ

where

F (q, θ) =

∫ ∞

0

∣∣e−ir cos θ − e−r | sin θ |
∣∣2

rq
dr

=

∫ ∞

0

(
cos(r cos θ) − e−r | sin θ |)2

+ sin2(r cos θ)

rq
dr.

For small β (0 � β � 10), the expression for ay in (2.17) can be expanded quite
easily using classical techniques, leading to

ay =
4C

4π

{∫ π/2

0

F (2p + 1, θ) sin2 θ dθ + p[(2p + 1)

∫ π/2

0

F (2p + 1, θ) sin4 θ dθ

− (2p + 2)

∫ π/2

0

F (2p + 1, θ) sin6 θ dθ ]β2 + O(β3)

}
.

The values of L
(x)
33 /L

(y)
33 can be directly computed for finite β using (2.16) and (2.19).

From table 3, the ratio L
(x)
33 /L

(y)
33 for 2 < 2p < 3 and 3 < 2p < 4 is given by

L
(x)
33

L
(y)
33

=
bx

by
. (5.2)

For 2 < 2p < 3, α = 2p − 2 and for 3 < 2p < 4, α = 2p − 3. Equation (2.14) gives

bx =


4C

4π

π

4

∫ ∞

0

r7−2p

(1 + r2)p+2
dr for 2 < 2p < 3

4C

4π

π

4

∫ ∞

0

r8−2p

(1 + r2)p+2
dr for 3 < 2p < 4,

which is independent of β . Equation (2.17) gives

by =


C

4π

∫ ∞

0

∫ 2π

0

r7−2p sin2 θ[sin2 θ + (cos θ + β sin θ)2]2

[1 + r2 sin2 θ + r2 (cos θ + β sin θ)2]p+2
dr dθ for 2 < 2p < 3

C

4π

∫ ∞

0

∫ 2π

0

r8−2p sin2 θ[sin2 θ + (cos θ + β sin θ)2]2

[1 + r2 sin2 θ + r2 (cos θ + β sin θ)2]p+2
dr dθ for 3 < 2p < 4.
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Figure 7. L
(x)
33 /L

(y)
33 as a function of β for 2p = 5/3 (solid line), 2p → 1 (dashed line) and

2p = 2.6 (dotted line).
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Figure 8. L
(x)
33 /L

(y)
33 as a function of height, computed from the LES.

Figure 7 displays the value of L
(x)
33 /L

(y)
33 as a function of β for 2p = 5/3 (solid line),

2p → 1 (dashed line) and 2p = 2.6 (dotted line). It can be used to analyse figure 8
which shows the ratio L

(x)
33 /L

(y)
33 computed from LES results as a function of z. It

can be seen that the ratio increases from 1.4 to 3 with height, which is reasonable
aspect ratio for the streaky structures that can be observed in the real atmosphere or
simulated in LES. Wilczak & Tillman (1980), using a network of in-situ temperature
and velocity sensors, showed that under slightly unstable, high-wind-speed conditions,
near-surface plumes are distinctly elongated in the mean wind direction with typical
longitudinal and lateral dimensions of several hundred and several tens of metres,
respectively. According to Maxey (1982), β has a typical value of 3.5 which does not
depend on the altitude above the ground. Figure 8 shows that L

(x)
33 /L

(y)
33 varies with

height. An RDT calculation predicts that this ratio should increase with increasing
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non-dimensional shear β . According to RDT, L
(x)
33 /L

(y)
33 = 1.4 corresponds to β = 1.3,

1.6 and 1.4 for 2p = 5/3, 1 and 2.6, respectively; L
(x)
33 /L

(y)
33 = 3 corresponds to β = 3.1,

4.3 and 3.1 for 2p = 5/3, 1 and 2.6, respectively. This is consistent with the evaluation
β = O(1) at all heights in the surface layer but two reasons may explain why L

(x)
33 /L

(y)
33

increases with z. The shear S decreases with height and the spectrum varies in a
non-trivial manner. The usual interpretation of β is β = S�e/ue and S = u∗/(k0z). If
both the RDT and LES performed above are valid, �e = βk0z is the scale of large
eddies, with βk0 varying from 0.6 to 1.75.

5.2. Comparison with the case of shear without blocking (free-stream turbulence)

This case is simpler than the case of shear plus blocking, because the turbulence
remains homogeneous. It can be deduced from the previous calculations by setting
z → ∞ (i.e. by dropping all the e−κz terms), since the non-dimensionnal shear β does
not depend on z in our calculation. Using (2.19) and (2.16) in the absence of blocking,
L

(x)
33 /L

(y)
33 becomes

L
(x)
33

L
(y)
33

=

∫ ∫
ΦH

33(0, m2, m3) dm2 dm3∫ ∫ (
m2

1 + (m3 + βm1)
2

m2
1 + m2

3

)2

ΦH
33(m1, 0, m3 + βm1) dm1 dm3

(5.3)

Using some algebra, we find that

L
(x)
33

L
(y)
33

=

∫ 2π

0

sin2 θdθ∫ 2π

0

sin2 θ

(1 − 2β cos θ sin θ + β2 sin2 θ)2
dθ

which shows that in a pure sheared situation and when a Kármán spectrum is used,
the ratio L

(x)
33 /L

(y)
33 does not depend of the spectrum decay 2p, which is consistent with

Townsend (1976). After a few more calculations, one can show that∫ 2π

0

sin2 θ dθ∫ 2π

0

sin2 θ

(1 − 2β cos θ sin θ + β2 sin2 θ)2
dθ

= 1. (5.4)

Thus one major finding of this calculation is that in a pure shear situation,
L

(x)
33 /L

(y)
33 = 1. This is discussed below.

Based on the vertical velocity, one can conclude as follows for various situations:
(i) in the case of shear without blocking, L(x)

33 /L
(y)
33 = 1; (ii) in a pure blocking situation

(without shear), L
(x)
33 /L

(y)
33 = 1 also (β = 0); (iii) in the presence of both shear and

blocking L
(x)
33 /L

(y)
33 > 1.

The pure shear case (without blocking) was studied by Townsend (1970, 1976)
and Hunt & Carruthers (1990) using RDT simulations. Hunt & Carruthers (1990)
plotted the longitudinal velocity fluctuations u1 which displayed elongated large
eddies, whereas Townsend (1970) and Townsend (1976) calculated the correlation
function and the integral length scales for u1.

The fact that L
(x)
33 /L

(y)
33 = 1 while L

(x)
11 /L

(y)
11 > 1 in a pure shear RDT calculation can

be explained by the loss of a major part of the redistribution of energy through the
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Poisson equation for pressure,

−	p = 2
∂Ul

∂xm

∂um

∂xl

+
∂ul

∂xm

∂um

∂xl

= 2S
∂u3

∂x1

+
∂ul

∂xm

∂um

∂xl

, (5.5)

subjected to appropriate boundary conditions, and where 	= ∇2 = ∂2/∂x2 + ∂2/∂y2 +
∂2/∂z2, Ui is the mean velocity field and uj the fluctuating field. Non-hydrostatic
corrections in the pressure are thus determined mainly through the nonlinear term.

In the case of RDT for shear without blocking, the equations for u1 and u3 thus
reduce to (neglecting the viscous term)

∂u1

∂t
+ Sz

∂u1

∂x1

=
∂

∂x1

[
	−1

(
2S

∂u3

∂x1

)]
− u3S,

∂u3

∂t
+ Sz

∂u3

∂x1

=
∂

∂x3

[
	−1

(
2S

∂u3

∂x1

)]
.

 (5.6)

This shows that in a pure shear (without blocking) situation, the coupling of the
velocity equations is one way only. There is no influence of the distortion of u1 on
the third component u3 (the contrary not being true). Therefore, structures created
on u1 by the distortion may have no counterpart on u3.

On the other hand, it was shown by Carlotti (2001) that blocking RDT is in fact
an application of the method of images, i.e. a symetrization of the vorticity field
ω = ∇ × u. Therefore, in the presence of both shear and blocking, elongated large
eddies apparent on the field u1 are transferred to all the components of the fluctuating
velocity field through induction (Biot and Savart’s law).

The present calculation shows that the redistribution of energy among directions
through blocking is a much more efficient process than through shear, even though
sheared-and-blocked turbulence is further from isotropy than sheared turbulence.

From a pragmatic point of view, in the pure shear situation, elongated large eddies
exist but they have no signature in the vertical velocity field. In the shear and blocking
case, blocking redistributes the energy of the large eddies in a way which makes the
signature of the structures apparent in the vertical velocity field.

6. Conclusion
In this study, estimates of inhomogeneous integral scales are derived from the

mathematics of rapid distortion theory (RDT) for the case of wall-bounded high-
Reynolds-number turbulence and from large-eddy simulation (LES) of a neutrally
stratified atmospheric boundary layer (ABL). In homogeneous turbulence, a single
integral scale can be defined, and it can be shown that it must be proportional to the
main functional length scale of the flow, namely the dissipation scale. On the other
hand, in inhomogeneous turbulence, the present paper shows that it is possible to
introduce 24 different integral scale (eighteen scales L

(xk+)
ij and six scales L

(z−)
ij ). In our

analysis, we focused on the four length scales L
(xi±)
33 , because they are the most affected

by blocking.
It is shown from RDT that the asymptotic behaviour of the integral length scales

for small heights depends crucially on the spectrum power law −2p. Indeed, when
2p > 1 there is always one length scale which does not scale with the distance to
the wall z. Only the downward integral scale L

(z−)
33 is proportional to z for any 2p.
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The integral scale L
(z−)
33 is thus a good candidate to be interpreted as Prandtl’s mixing

length. This gives a way of estimating theoretically Kármán’s constant, and we find
a value between 0.2 and 0.5 depending on the spectrum decay 2p.

These results show that the assumption, often made in studies of boundary layers,
that all the lengths are proportional to z, is thus not compatible with the assumption
of a spectrum decaying according to Kolmogorov’s law, but rather with a spectrum
following a −1 power law. This is an encouraging result since there is now widespread
theoretical, experimental and numerical evidence that such a −1 power-law subrange
exists in the spectra of high-Reynolds-number wall-bounded turbulence, for eddies
larger than z. The RDT results allow the vertical profiles of the integral length scales
computed from the LES outputs to be interpreted: above the third grid point, the
vertical profiles of the integral length scales have a linear shape, as expected for
high-Reynolds-number turbulence and 2p = 1. Very close to the surface, the upward
integral length scales decreases with z because of the fast decay of the spectrum
(2p > 2) due to the LES subgrid model.

The longitudinal-to-transverse integral length scale ratio L
(x)
33 /L

(y)
33 is computed using

RDT and LES. This ratio is interpreted as the aspect ratio of elongated near-wall
large eddies, which are ubiquitous features of LES of boundary layers in which shear
plays an important role in the dynamics. The LES shows that L

(x)
33 /L

(y)
33 is an increasing

function of z, which, according to RDT, corresponds to β between 1 and 4, of the
order of the theoretical value of 3.5 published by Maxey (1982). From RDT, the
evolution with z of the longitudinal-to-transverse integral length scale ratio means
either that the effective shear β and the spectral power law 2p vary in a non-trivial
manner, or if both the RDT and LES are valid the scale of the large eddies is
proportional to βz with β varying from 1.3 to about 4.

These findings on integral scales in the atmospheric boundary layer, found
both through inhomogeneous RDT and LES, still have to be confirmed by field
experiments, which may also shed more light on energy transfer processes associated
with the anisotropic scaling of the integral scales.

The implications for LES subgrid models near walls are of importance. First, LES
models based on a Boussinesq hypothesis (the hypothesis that small scales act in
an isotropic way on the large scales) have to take our findings into account by a
modification of the model close to the wall (see Redelsperger, Mahé & Carlotti
2001). Since nearly all LES models used nowadays rely explicitly or implicitly
on the Boussinesq hypothesis (most of them through their origins as modified
Smagorinski models, including the dynamic models), our results may explain the
many problems found in taking into account near-wall turbulence. They also show
that the assumptions used in the theory intended to correct some models (such as
a −5/3 decay of the spectrum) might stand on a very weak basis. For the next
generation of models, which will eventually discard the Boussinesq hypothesis and
be based on anisotropic ideas, even at the subgrid scale, one solution to overcome
the difficulties may be to assume anisotropy of the dissipation and not only of the
subgrid kinetic energy.
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Appendix A. Lemma
In this Appendix, the lemmas used in the article are given for the sake of

completeness. The proofs are not given, but can be found in mathematics textbooks
or in Carlotti (2001).

Lemma 1. Let f be a differentiable function such that
∫

f and
∫

f ′ converge
absolutely and that f is twice differentiable in 0. Then

lim
A→∞

∫ ∞

0

f (x)
sin(Ax)

x
dx =

π

2
f (0).

Lemma 2. Suppose f is integrable. Then

lim
A→∞

∫ ∞

−∞
f (x) cos Ax dx = 0.

Appendix B. Theorems
In this Appendix, the theorems used in the article are given. The proofs can be

found in Carlotti (2001).

Theorem 1. Let 0 < α < 1, d be the space dimension and

I (l) =

∫
· · ·
∫

�d

f (x)K(lx)

|x|α dx

so that

f (x) =

N∑
j=0

fj (θ)r−j + Or→∞
(
r−(N+1)

)
,

K(x) =

N−d∑
j=0

Kj (θ)rj + Or→0(r
N−d+1),

where x = rθ , |θ | = 1, r ∈ �+, then

I (l) =

N∑
j=0

(
fp

∫
· · ·
∫

�d

fj (θ )K(rθ )

rj−d+1+α
dθ dr

)
lj−d+α

+

N−d∑
j=0

(
fp

∫
· · ·
∫

�d

f (rθ )Kj (θ )rj+d−1−α dθ dr

)
lj + Ol→0(l

N−d+1).

Theorem 2. Let α = 0, then the function I (l) defined in Theorem 2 becomes

I (l) =

∫
· · ·
∫

�d

f (x)K(lx) dx
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and

I (l) =

N∑
j=0

(
fp

∫
· · ·
∫

�d

fj (θ )K(rθ )

rj−d+1
dθ dr

)
lj−d

−
(∫∫

Kj−d(θ)fj (θ) dθ

)
lj−d ln l

+

N−d∑
j=0

(
fp

∫
· · ·
∫

�d

f (rθ )Kj (θ )rj+d−1 dθ dr

)
lj + Ol→0(l

N−d+1 ln l). (B 1)
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